American Journal of Physics and Applications

Submit a Manuscript

Publishing with us to make your research visible to the widest possible audience.

Propose a Special Issue

Building a community of authors and readers to discuss the latest research and develop new ideas.

The Thermo-field Dynamics Method for Electron with Two-mode Electromagnetic Field

The quick progress in quantum entanglement research allows us not one to study quantum systems down to N-bodies but also to take a new look at these systems in different branches of physics; particularly the statistical thermodynamics where the application of the thermo-field dynamics (TFD) method to the investigation of entanglement is fruitful. Because the traditional methods based on the identification of a specific parameter show their limit. The process using (TFD) facilitates the understanding of entanglement because it focuses directly on the eigenstate of the system and it is useful in the equilibrium and the non-equilibrium states also. In this context, the (TFD) method is used in this paper to analyze entanglement of an electron interacting with a two-mode electromagnetic field assimilated to an electron with two harmonic oscillators. Entanglement entropies are derived between concerned, not concerned harmonic oscillator and electron compute when the system is in a thermodynamic equilibrium and non-equilibrium state. For the equilibrium case, an increase in the number of particles per unit volume increases the quantum entanglement consequently entanglement appears more important for the couple oscillator-electron than the one electron, this trend is reversed for the non-equilibrium case. By respecting the entanglement parameters, such results allow us to know the relative equilibrium state of the overall system.

Entanglement, Equilibrium and Non-equilibrium Thermodynamic State, Electron-two Harmonic Oscillators

Ahlem Abidi. (2023). The Thermo-field Dynamics Method for Electron with Two-mode Electromagnetic Field. American Journal of Physics and Applications, 11(1), 21-30.

Copyright © 2023 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License ( which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. A. K. Ekert: Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67, 661 (1991).
2. C. Kollmitzer, M. Pivk: Applied Quantum Cryptography, Springer, Heidelberg. (2010).
3. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, W. K. Wootters: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky- Rosen channles, Phys. Rev. Lett. 70, 1895 (1993).
4. R. Raussendorf, H. J. Briegel: A One-Way Quantum Computer, Phys. Rev. Lett. 86, 22 (2000).
5. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J. L. O’Brien: Quantum computers, Nat. 464, 45-53 (2010).
6. M. Srednicki: Entropy and area, Phys. Rev. Lett. 71, 666 (1993).
7. S. N. Solodukhin: Entanglement entropy of black holes, L. Rev. Rel. 14, 8 (2011). arXiv: 1104.3712 (hep-th).
8. J. S. Kim, B. C. Sanders: Monogamy of multi-qubit entanglement using Rényi Entropy, J. Phys. A: Math. Theo. 43, 445305 (2010).
9. S. Luo: Quantum discord for two-qubit systems, Phys. Rev. A. 77, 042303 (2008).
10. A. Abidi, A. Trabelsi, S. Krichene: Coupled harmonic oscillators and their application in the dynamics of entanglement and the nonadiabatic Berry phases, Can. J. Phys. 99, 10 (2021).
11. A. Abidi, A. Trabelsi: Dynamics of entanglement in coherent states, entangled Schrödinger cat state and distribution function, Rep. Math. Phys. 90, 123-140 (2022).
12. E. Romera, M. Calixto, Á. Nagy: Entropic uncertainty and the quantum phase transition in the Dicke model, EPL. 97, 2 (2012).
13. J-Ph. W. MacLean, J. M. Donohue, K. J. Resch: Direct Characterization of Ultrafast Energy-Time Entangled Photon Pairs, Phys. Rev. Lett. 120, 053601 (2018).
14. H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, S. N. Zhu: On-chip steering of entangled photons in nonlinear photonic crystals, Nat. Com. 2, 429 (2011).
15. H. Defienne, M. Reichert, J. W. Fleischer: Adaptive Quantum Optics with Spatially Entangled Photon Pairs, Phys. Rev. Lett. 120, 053601 (2018).
16. C. Monroe: Quantum information processing with atoms and photons, Nat. 416, 238-246 (2002).
17. E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, W. Tittel: Broadband waveguide quantum memory for entangled photons, Nat. 469, 512-515 (2011).
18. R. J. Young, R. M. Stevenson, P. Atkinson, K. Cooper, D. A. Ritchie, A. J. Shields: Improved fidelity of triggered entangled photons from single quantum dots, N. J. Phys. 8, 29 (2006).
19. R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, A. J. Shields: A semiconductor source of triggered entangled photon pairs, Nat. 439, 179-182 (2006).
20. Y. Hashizume, M. Suzuki: Understanding quantum entanglement by thermo field dynamics, Phys. A. 392, 3518-3530 (2016).
21. K. Nakagawa: Entanglement entropies of coupled harmonic oscillators, Cond-mat.stat-mech. 34, 1-16 (2016).
22. D. N. Makarov: High Intensity Generation of Entangled Photons in a Two-Mode Electromagnetic Field, An. der. Phys. 529, 10 (2017).
23. I. A. Gonoskov, G. A. Vugalter, V. A. Mironov: Ionization in a Quantized Electromagnetic Field, J. Exp. Theo. Phys. 105, 1119-1131 (2007).
24. N. Linden, S. Popescu: On Multi-Particle Entanglement, Wiley. (1999).
25. D. Park: Dynamics of entanglement in three coupled harmonic oscillator system with arbitrary time-dependent frequency and coupling constants, Theo. Math. Phys. 18, 282 (2019).